正弦級数,余弦級数,複素形フーリエ級数(Sine series, Cosine series, Complex Fourier series)

$f(x)$$[-L,L]$で偶関数ならば, $f(x)\cos{\frac{n\pi x}{L}}$は偶関数, $f(x)\sin{\frac{n\pi x}{L}}$は奇関数となり,そのフーリエ係数は
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{L}\int_{-L}^{L}f(x)\cos{\frac{n\pi x}{L}}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{L}\int_{0}^{L}f(x)\cos{\frac{n\pi x}{L}}dx  (n = 0,1,2\ldots ),$  
$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{L}\int_{-L}^{L}f(x)\sin{\frac{n\pi x}{L}}dx = 0  (n = 1,2\ldots )$  

で与えられます.また,$f(x)$が奇関数ならば, $f(x)\cos{\frac{n\pi x}{L}}$は奇関数, $f(x)\sin{\frac{n\pi x}{L}}$は偶関数となり,そのフーリエ係数は
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle 0  (n = 0,1,2\ldots ),$  
$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{L}\int_{-L}^{L}f(x)\sin{\frac{n\pi x}{L}}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{L}\int_{0}^{L}f(x)\sin{\frac{n\pi x}{L}}dx  (n = 1,2\ldots )$  

で与えられます.

関数$f(x)$$[0,L]$で定義されているとき,

$\displaystyle f_{e}(-x) = \left\{\begin{array}{ll}
f(-x), & x \in [-L,0)\\
f(x), & x \in [0,L]
\end{array} \right. , \
f_{e}(x) \equiv f_{e}(x + 2L)$

によって,周期$2L$の偶関数に拡張された関数$f_{e}(x)$偶関数拡張(even extension)といいます.また,

$\displaystyle f_{o}(-x) = \left\{\begin{array}{ll}
-f(-x), & x \in [-L,0)\\
f(x), & x \in [0,L]
\end{array} \right. ,  f_{o}(x) \equiv f_{o}(x + 2L) $

によって,周期$2L$の奇関数に拡張された関数$f_{o}(x)$奇関数拡張(odd extension)といいます.

例題 6..8  

$f(x) = x+1$$[0,1]$で定義されているとき, $f_{e}(x),f_{o}(x)$を求めよ.

$\displaystyle f_{e}(x) = \left\{\begin{array}{rl}
-x+1,& x \in [-1,0)\\
x+1,& ...
...\begin{array}{rl}
x-1,& x \in [-1,0)\\
x+1,& x \in [0,1]
\end{array}\right . .$

図: 偶関数拡張と奇関数拡張
\includegraphics[width=10cm,scale=1.1]{DFQ/Fig2-4.eps}

$f(x)$の偶関数拡張$f_{e}(x)$は区間$[-L,L]$で区分的に連続.したがって,$f_{e}(x)$のフーリエ級数は次のように表わせます.

$\displaystyle f_{e}(x)$ $\displaystyle \sim$ $\displaystyle \frac{a_{0}}{2} + \sum_{n=1}^{\infty}a_{n}\cos{\frac{n\pi x}{L}},$  
$\displaystyle a_{0}$ $\displaystyle =$ $\displaystyle \frac{2}{L}\int_{0}^{L}f_{e}(x)dx = \frac{2}{L}\int_{0}^{L}f(x)dx,$  
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{L}\int_{0}^{L}f(x)\cos{\frac{n\pi x}{L}}dx,  n \neq 0.$  

$f_{e}(x)$のフーリエ級数は$[0,L]$での$f(x)$のフーリエ級数,$[-L,0]$での$f(x)$の 偶関数拡張のフーリエ級数を表わします.これより$f_{e}(x)$のフーリエ級数を$f(x)$フーリエ余弦級数(Fourier cosine transform)といいます.

例題 6..9  

次の関数のフーリエ余弦級数を求めよ.

$\displaystyle f(x) = \left\{\begin{array}{cl}
x,& 0 \leq x \leq \frac{\pi}{2}\\
0,& \frac{\pi}{2} < x \leq \pi
\end{array}\right . .$

$\displaystyle a_{0} = \frac{2}{\pi}\int_{0}^{\pi}f(x)dx = \frac{2}{\pi}\int_{0}...
...rac{x^2}{2}\mid_{0}^{\pi/2}] = \frac{2}{\pi}[\frac{\pi^2}{8}] = \frac{\pi}{4}, $


$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi/2}x\cos{nx}dx   \left(\begin{array}{...
...u = x & dv = \cos{nx}dx\\
du = dx & v = \frac{1}{n}\sin{nx}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{x\sin{nx}}{n}\vert _{0}^{\pi/2} - \frac{1}{n}\int_{0}^{\pi/2}\sin{nx}dx ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi n^2}(2\cos{\frac{n \pi}{2}} + n\pi\sin{\frac{n\pi}{2}} - 2)$  

より

$\displaystyle f(x) \sim \frac{\pi}{8} + \frac{1}{\pi}[(\pi - 2)\cos{x} - \cos{2...
...(\frac{\pi}{3} + \frac{2}{9})\cos{3x} + \cdots ] .
\ensuremath{ \blacksquare}
$

偶関数拡張と同様に奇関数拡張$f_{o}(x)$のフーリエ級数は関数列 $\{\sin{\frac{n\pi x}{L}}\}$を用いて表わすことができます.つまり

$\displaystyle f_{o}(x)$ $\displaystyle \sim$ $\displaystyle \sum_{n=1}^{\infty}b_{n}\sin{\frac{n\pi x}{L}},$  
$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{L}\int_{0}^{L}f_{o}(x)\sin{\frac{n\pi x}{L}}dx = \frac{2}{L}\int_{0}^{L}f(x)\sin{\frac{n\pi x}{L}}dx.$  

このようにして得たフーリエ級数を$f(x)$フーリエ正弦級数(Fourier sine transform)といいます.

例題 6..10  

次の関数のフーリエ正弦級数を求めよ.

$\displaystyle f(x) = \left\{\begin{array}{cl}
x,& 0 \leq x \leq \frac{\pi}{2}\\
0,& \frac{\pi}{2} < x \leq \pi .
\end{array}\right . $


$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi/2}x\sin{nx}dx = \frac{2}{\pi}[-\frac{x\cos{nx}}{n}\mid_{0}^{\pi/2} + \frac{1}{n}\int_{0}^{\pi/2}\cos{nx}dx ]$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[-\frac{\frac{\pi}{2}\cos{\frac{n\pi}{2}}}{n} + \frac{1}{n^2}\sin{nx}\mid_{0}^{\pi/2}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi n^2}(2\sin{\frac{n\pi}{2}} - n\pi\cos{\frac{n\pi}{2}}).$  

よって,

$\displaystyle f(x) \sim \frac{1}{\pi}(2\sin{x} + \frac{\pi}{2}\sin{2x} - \frac{2}{9}\sin{3x} - \frac{\pi}{4}\sin{4x} + \cdots ).
\ensuremath{ \blacksquare}
$

フーリエ級数の中に現われる $\cos{\frac{n\pi x}{L}}$ $\sin{\frac{n\pi x}{L}}$をEulerの公式 $e^{i\theta} = \cos{\theta} + i\sin{\theta}$を用いて表わすと

$\displaystyle f(x)$ $\displaystyle \sim$ $\displaystyle \frac{a_{0}}{2} + \sum_{n=1}^{\infty}[a_{n}(\frac{e^{in\pi x/L} + e^{-in\pi x/L}}{2}) + b_{n}(\frac{e^{in\pi x/L} - e^{-in\pi x/L}}{2i})]$  
  $\displaystyle =$ $\displaystyle \frac{a_{0}}{2} + \sum_{n=1}^{\infty}[(\frac{a_{n}-ib_{n}}{2})e^{in\pi x/L} + (\frac{a_{n} + ib_{n}}{2})e^{-in\pi x/L}]$  

となります. ここで $c_{0} = a_{0}/2, c_{n} = (a_{n} - ib_{n})/2  (n > 0), c_{n} = (a_{-n} + ib_{-n})/2  (n < 0)$とおくと$f(x)$のフーリエ級数は

$\displaystyle f(x) \sim \sum_{n = -\infty}^{\infty} c_{n}e^{in\pi x/L} $

$\displaystyle c_{n} = \frac{1}{2L}\int_{-L}^{L}f(x)e^{-in\pi x/L}dx $

で表わされます.このフーリエ級数を複素形フーリエ級数(complex form of Fourier transform)といいます.

例題 6..11  

次の関数を複素形フーリエ級数を用いて表わせ.

$\displaystyle \left\{\begin{array}{cl}
2,&-\pi \leq x < 0\\
1,&0 \leq x \leq \pi .
\end{array}\right . $


$\displaystyle c_{0}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx = \frac{1}{2\pi}[\int_{-\pi}^{0}2dx + \int_{0}^{\pi}dx] = \frac{3}{2},$  
$\displaystyle c_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dx = \frac{1}{2\pi}[\int_{-\pi}^{0}2e^{-inx}dx + \int_{0}^{\pi}e^{-inx}dx]$  
  $\displaystyle =$ $\displaystyle -\frac{1}{i\pi n}e^{-inx}\mid_{-\pi}^{0} - \frac{1}{i2n\pi n}e^{-inx}\mid_{0}^{\pi} = \frac{i}{n\pi}[1-e^{in\pi}] + \frac{1}{2n\pi}[e^{-in\pi}-1]$  
  $\displaystyle =$ $\displaystyle \frac{i}{n\pi}[1-(-1)^{n}] + \frac{i}{2n\pi}[(-1)^{n} - 1] = \lef...
...
0, & n  \mbox{even}\\
\frac{i}{n\pi}, & n  \mbox{odd} .
\end{array}\right .$  

したがって,

$\displaystyle f(x) \sim \frac{3}{2} + \frac{i}{\pi}\sum_{k=-\infty, k \neq 0}^{\infty}\frac{1}{2k+1}e^{i(2k+1)x}.
\ensuremath{ \blacksquare}
$



Subsections