next up previous contents index
: 合成法則と積分方程式 : 微分方程式への応用 : 微分方程式への応用   目次   索引

演習問題

1. 次の初期値問題を解け.
$ (a) \ y^{\prime\prime} + 4y^{\prime} - 5y = e^{t}, \ y(0) = 0, \ y^{\prime}(0) = 1 $
$ (b) \ y^{\prime\prime} + 4y^{\prime} + 4y = e^{-t}, \ y(0) = 1, \ y^{\prime}(0) = 1 $
$ (c) \ y^{\prime\prime} + 4y^{\prime} - 5y = f(t), \ y(0) = 0, \ y^{\prime}(0) = 0 $

$\displaystyle f(t) = \left\{\begin{array}{rl}
2,&0 < t < \pi\\
\cos{t},&t > \pi
\end{array}\right. $

$ (d) \ \left\{\begin{array}{l}
y_{1}^{\prime} + y_{2} = 0 \\
y_{1} + y_{2}^{\prime} = 0, \ y_{1}(0) = 2, \ y_{2}(0) = 0
\end{array}\right. $
$ (e) \ \left\{\begin{array}{l}
y_{1}^{\prime} - y_{2}^{\prime} - y_{2} = -e^{t}...
...}^{\prime} - y_{2} = e^{2t}, \ y_{1}(0) = 0, \ y_{2}(0) = 1
\end{array}\right. $
$ (f) \ \left\{\begin{array}{l}
y_{1}^{\prime\prime} + 2y_{2}^{\prime} + y_{1} =...
...}(0) = y_{1}^{\prime}(0) = y_{2}(0) = y_{2}^{\prime}(0) = 0
\end{array}\right. $



Administrator 平成26年9月18日