next up previous contents index
: Bernoulii, Riccatiの方程式 : 線形微分方程式 : 線形微分方程式   目次   索引

演習問題

1. 次の微分方程式を解け.
\begin{displaymath}\begin{array}{ll}
(a) \ y^{\prime}\cos{x} - y\sin{x} + e^{x} ...
...{x} & (d) \ xy^{\prime} + (1 + x)y = e^{-x}\sin{2x}
\end{array}\end{displaymath}
2. 次の初期値問題を解け.
$ (a) \ y^{\prime} + (\cos{x})y = e^{-\sin{x}}, \ y(0) = 2$
$ (b) \ (x\log{x})y^{\prime} - y = \log{x}, \ y(e) = -1$
$ (c) \ y^{\prime} + y = f(x), \ y(0) = 0, \ f(x) = \left\{\begin{array}{ll}
1, & 0 \leq x < 1\\
0, & x \geq 1
\end{array}\right. $
$ (d) \ y^{\prime} + (\tan{x})y = \cos^{2}{x}, \ y(0) = -1$
3. $ R = 10\Omega, E = 20V, L = \left\{\begin{array}{rl}
5-t,& 0 \leq t\leq 5\\
0,& 5 \leq t
\end{array}\right.$$ RL$回路で$ i(0) = 0$のとき,$ i(t)$を求めよ.



Administrator 平成26年9月18日