例題 次のスカラー場 $f$ の放物面 $\displaystyle{S : x^2 + y^2 + z = 4}$ のうち$z \geq 0$ の部分上での面積分を求めよ.

$\displaystyle f(x,y,z) = \frac{2y^2 + z}{(4x^2 + 4y^2 + 1)^{1/2}}$

解答 曲面 $S : x^2 + y^2 + z = 4$ より対応する ${\bf r}$ を位置ベクトルとすると

$\displaystyle {\bf r} = x\:{\bf i} + y\:{\bf j} + (4 - x^2 - y^2)\:{\bf k} $

次に曲面 $S$ の法線ベクトル ${\bf r}_{x} \times {\bf r}_{y}$ を求めると
$\displaystyle {\bf r}_{x} \times {\bf r}_{y}$ $\displaystyle =$ $\displaystyle ({\bf i} -2x\:{\bf k}) \times ({\bf j} -2y\:{\bf k})$  
  $\displaystyle =$ $\displaystyle \left\vert\begin{array}{ccc}
{\bf i} & {\bf j} & {\bf k}\\
1 & 0 & -2x\\
0 & 1& -2y
\end{array}\right\vert = 2x\:{\bf i} + 2y\:{\bf j} + {\bf k}$  

これより

$\displaystyle \vert{\bf r}_{x} \times {\bf r}_{y}\vert = \sqrt{4x^2 + 4y^2 + 1}$

ここで, $\displaystyle{\Omega : 4 - (x^2 + y^2) \geq 0}$ より極座標変換を行なうと
$\displaystyle \iint_{S} f(x,y,z) dS$ $\displaystyle =$ $\displaystyle \iint_{\Omega}\frac{2y^2 + z}{(4x^2 + 4y^2 + 1)^{1/2}}\vert{\bf r}_{x} \times {\bf r}_{y}\vert dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Omega}(2y^2 + z)dx dy = \int_{0}^{2\pi}\int_{0}^{2}(4 - r^2 + 2r^2 \sin^{2}{\theta}) r dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2 \pi}\left[2r^2 - \frac{r^2}{4} + \frac{r^4}{2}\sin^{2...
...i} d\theta = \int_{0}^{2\pi}(4 + 8\sin^{2}\theta)d\theta = 8 \pi + 8\pi = 16\pi$