例題 面積分をGaussの発散定理を用いて求めよ.

$\displaystyle \iint_{S} (xz^2{\bf i} + (x^2 y - z^3){\bf j} + (2xy + y^2 z){\bf k})\cdot{\bf n}dS$

ただし,曲面$S$は上半球面 $S_{1} : z = \sqrt{a^2 - x^2 - y^2}, x^2 + y^2 \leq a^2$ $S_{2} : z = 0, x^2 + y^2 \leq a^2$からなっているとする

解答 ${\bf F} = xz^2{\bf i} + (x^2 y - z^3){\bf j} + (2xy + y^2 z){\bf k}$より,

$\displaystyle {\rm div}{\bf F} = \nabla \cdot {\bf F} = z^2 + x^2 +y^2$

また,曲面$S$で囲まれている内部を$V$とすると,Gaussの発散定理より


$\displaystyle \iint_{S}{\bf F}\cdot {\bf n}dS$ $\displaystyle =$ $\displaystyle \iiint_{V}{\rm div}{\bf F}dV$  
  $\displaystyle =$ $\displaystyle \iiint_{V}(x^2 + y^2 + z^2)dV$  

この積分を行うために,極座標変換を用いる.$\theta$$x$軸からの角度,$\phi$$z$じくからの角度とすると,
$\displaystyle x$ $\displaystyle =$ $\displaystyle \rho \sin{\phi}\cos{\theta}$  
$\displaystyle y$ $\displaystyle =$ $\displaystyle \rho \sin{\phi}\sin{\theta}$  
$\displaystyle z$ $\displaystyle =$ $\displaystyle \rho \cos{\phi}$  

これより,

$\displaystyle x^2 + y^2 + z^2 = \rho^2 \sin^{2}{\phi}\cos^{2}{\theta} + \rho^2 \sin^{2}{\phi}\sin^{2}{\theta} + \rho^2 \cos^{2}{\phi} = \rho^2$

また,Jacobianは

$\displaystyle J = \begin{array}{\vert lll\vert}
x_{\rho} & x_{\phi} & x_{\theta...
...os{\theta}\\
\cos{\phi} & -\rho \sin{\phi} & 0
\end{array} = \rho^2 \sin{\phi}$

ここで,$S$は上半球面より $0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi, 0 \leq \rho \leq a$. よって

$\displaystyle \iiint_{V}(x^2 + y^2 + z^2)dV$ $\displaystyle =$ $\displaystyle \int_{\theta = 0}^{2\pi}\int_{0}^{\pi}\int_{0}^{a}\rho^2 \rho^2 \sin{\phi}d\rho d\phi d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}d\theta \int_{0}^{\pi}\sin{\phi}d\phi \int_{0}^{a}\rho^4d \rho$  
  $\displaystyle =$ $\displaystyle (2\pi)(2)(\frac{a^5}{5}) = \frac{4 \pi a^5}{5}$