Example Given ${\bf A} = (-1,2,3), {\bf B} = (0,-3,2)$, Find the following values. 1. $3{\bf B} - 2{\bf A}$
2. Angle $\theta$ between A and B

Answer 1. $3{\bf B} - 2{\bf A} = 3(0,-3,2) -2(-1,2,3) = (2,-13,0)$. 2. Since ${\bf A}\cdot {\bf B} = \vert{\bf A}\vert\vert{\bf B}\vert\cos{\theta}$, we have

$\displaystyle \cos{\theta}$ $\displaystyle =$ $\displaystyle \frac{{\bf A}\cdot {\bf B}}{\vert{\bf A}\vert\vert{\bf B}\vert}$  
  $\displaystyle =$ $\displaystyle \frac{0}{\sqrt{1+4+9}\sqrt{0+9+4}} = 0$  

Thus the angle $\theta = \frac{\pi}{2}$. We note that $A$ and $B$ are diagonal.