Example Reduce the matrix $A$.

$\displaystyle A = \left(\begin{array}{rrrr}
1&-2&3&-1\\
2&-1&2&2\\
3&0&2&3
\end{array}\right) $

Answer If the lower elements of the diagonal are all zeros, then the matrix is called echelon matrix. If the leading elements of all rows are $1$, then the matrix is called reduced and denoted by$A_{R}$


  $\displaystyle {}$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&3&-1\\
2&-1&2&2\\
3&0&2&3
\end{a...
...} \left(\begin{array}{rrrr}
1&-2&3&-1\\
0&3&-4&4\\
3&0&2&3
\end{array}\right)$  
  $\displaystyle \stackrel{-3 R_{1} + R_{3}}{\rightarrow }$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&3&-1\\
0&3&-4&4\\
0&6&-7&6
\end{...
...{rrrr}
1&-2&3&-1\\
0&1&-\frac{4}{3}&\frac{4}{3}\\
0&6&-7&6
\end{array}\right)$  
  $\displaystyle \stackrel{-6 R_{2} + R_{3}}{\rightarrow }$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&3&-1\\
0&1&-\frac{4}{3}&\frac{4}{...
...gin{array}{rrrr}
1&-2&3&-1\\
0&1&0&-\frac{4}{3}\\
0&0&1&-2
\end{array}\right)$  
  $\displaystyle \stackrel{2 R_{2} + R_{1}}{\rightarrow }$ $\displaystyle \left(\begin{array}{rrrr}
1&0&0&\frac{7}{3}\\
0&1&0&-\frac{4}{3}\\
0&0&1&-2
\end{array}\right) .$