Example Find the rank of the matrix $A$..

$\displaystyle A = \left(\begin{array}{rrrr}
1&-2&5&3\\
2&3&1&-1\\
3&8&-3&-5
\end{array}\right) $

Answer Note that the rank of matrix is the same as the nonzero rows of the reduced matrix.


$\displaystyle A$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&5&3\\
2&3&1&-1\\
3&8&-3&-5
\end{...
...left(\begin{array}{rrrr}
1&-2&5&3\\
0&7&-9&-7\\
0&14&-18&4
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{cc}
{}^{\frac{1}{7} \times R_{2}}\\
{}^{-2R_{2} + R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&5&3\\
0&1&\frac{-9}{7}&-1\\
0&0&...
...rrrr}
1&0&\frac{17}{7}&1\\
0&1&\frac{-9}{7}&-1\\
0&0&0&0
\end{array}\right) .$  

Then the number of nonzero rows of the reduced matrix $A_{R}$ is $2$. Thus ${\rm rank}(A) = 2$. Furthermore, the row vector $\displaystyle{(1,0,\frac{17}{7},1)}$ of $A_{R}$ and the row vector $\displaystyle{(0,1,\frac{-9}{7},-1)}$ are bases of vector space $A$. Therefore, the dimension of the row space is $2$