Example Find the eigen value and eigen vector of $A$..

$\displaystyle A = \left(\begin{array}{rrr}
0&1&1\\
1&0&1\\
1&1&0
\end{array}\right)$

Ansewr $\Phi_{A}(t) = \left \vert\begin{array}{rrr}
-t & 1 & 1\\
1 & -t & 1\\
1 & 1 & -t
\end{array}\right \vert = -(t+1)^{2}(t-2).$ Then the eigen vector of $A$ is $\lambda = 2,-1$.Now we find the eigen vector of $A$

The eigen vector corresponding to $\lambda = 2$ satisfies $(A - 2I){\mathbf x} = {\bf0}$. So, we solve this using the reduction of the matrix $A$.

$\displaystyle A - 2I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
-2&1 & 1\\
1& -2 & 1\\
1&1&-2
\end{arr...
...htarrow}
\left(\begin{array}{rrr}
1&1&-2\\
1&-2&1\\
-2&1&1
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{cc}
{}^{-R_{1} + R_{2}}\\
{}^{2R_{1} + R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&1&-2\\
0&-3&3\\
0 & 3&-3
\end{array}...
...rrow}
\left(\begin{array}{rrr}
1&1&-2\\
0&1&-1\\
0 & 0&0
\end{array}\right) .$  

Note that the degree of freedom is 1. Thus, we set $x_{3} = \alpha$. Then

$\displaystyle {\mathbf x} = \left(\begin{array}{c}
x_{1}\\
x_{2}\\
x_{3}
\end...
...alpha \left(\begin{array}{c}
1\\
1\\
1
\end{array}\right) \ (\alpha \neq 0). $

Next we find the eigen vector corresponding to $\lambda = -1$. To do so, we solve $(A - 3I){\mathbf x} = {\bf0}$. Then

$\displaystyle A+ I = \left(\begin{array}{rrr}
1&1&1\\
1&1&1\\
1&1&1
\end{arra...
...htarrow} \left(\begin{array}{rrr}
1&1&1\\
0&0&0\\
0 & 0&0
\end{array}\right) $

Then the degree of freedom is 2. Thus , we can set $x_{2} = \beta \neq 0, x_{3} = \gamma \neq 0$. Then

$\displaystyle {\mathbf x} = \left(\begin{array}{c}
-x_{2} - x_{3}\\
x_{2}\\
x...
...array}\right) + \gamma \left(\begin{array}{r}
-1\\
0\\
1
\end{array}\right).
$