例題 行列 $A$ の階数を求めよう.

$\displaystyle A = \left(\begin{array}{rrrr}
1&-2&5&3\\
2&3&1&-1\\
3&8&-3&-5
\end{array}\right) $

解答
$\displaystyle A$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&5&3\\
2&3&1&-1\\
3&8&-3&-5
\end{...
...left(\begin{array}{rrrr}
1&-2&5&3\\
0&7&-9&-7\\
0&14&-18&4
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{cc}
{}^{\frac{1}{7} \times R_{2}}\\
{}^{-2R_{2} + R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrrr}
1&-2&5&3\\
0&1&\frac{-9}{7}&-1\\
0&0&...
...rrrr}
1&0&\frac{17}{7}&1\\
0&1&\frac{-9}{7}&-1\\
0&0&0&0
\end{array}\right) .$  

これより $A_{R}$ の階段の数は $2$ となるので ${\rm rank}(A) = 2$. ついでに $A_{R}$ の行ベクトル $\displaystyle{(1,0,\frac{17}{7},1)}$ $\displaystyle{(0,1,\frac{-9}{7},-1)}$$A$ の行空間の基底をなしている.よって行空間の次元は $2$ である.