Wxample Find the particular solution to the follwing differential equation.

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rr}
3&2\\
1&2
\end{array}\right){\bf X} + \left(\begin{array}{c}
e^{2t}\\
2e^{2t}
\end{array}\right)$

Answer $\det(A - \lambda I) = (\lambda - 4)(\lambda - 1) = 0$. Then $\lambda = 4,1$.We find the eigen vector corresponding to $4$. $(A - 4 I) = \left(\begin{array}{rr}
-1&2\\
1&-2
\end{array}\right)$. Then the eigen vector is $\left(\begin{array}{c}
2\\
1
\end{array}\right)$.Thus, ${\bf X}_{1} = \left(\begin{array}{c}
2\\
1
\end{array}\right)e^{4t}$ is a solution. We next find the eigen vector corresonding to $1$. $(A - I) = \left(\begin{array}{rr}
2&2\\
1&1
\end{array}\right)$. Then eigen vector is $\left(\begin{array}{c}
1\\
-1
\end{array}\right)$. Thus, ${\bf X}_{2} = \left(\begin{array}{c}
1\\
-1
\end{array}\right)e^{t}$ is also a solution. From this, we find the fundamental matrix.

$\displaystyle \Phi(t) = \left(\begin{array}{rr}
2e^{4t}&e^{t}\\
e^{4t}&-e^{t}
\end{array}\right)$

. To find the general solution, we solve the following system of linear equation.

$\displaystyle \Phi {\bf U}^{\prime} = {\bf F} $

$\displaystyle \left(\begin{array}{rr}
2e^{4t}&e^{t}\\
e^{4t}&-e^{t}
\end{array...
...nd{array}\right) = \left(\begin{array}{c}
e^{2t}\\
2e^{2t}
\end{array}\right) $

To solve this, we use Cramer's rule.

$\displaystyle u_{1}^{\prime} = \frac{\left\vert\begin{array}{rr}
e^{2t}&e^{t}\\...
...\
e^{4t}&-e^{t}
\end{array}\right\vert} = \frac{-3e^{3t}}{-3e^{5t}} = e^{-2t} $

$\displaystyle u_{2}^{\prime} = \frac{\left\vert\begin{array}{rr}
2e^{4t}&e^{2t}...
...&2e^{2t}
\end{array}\right\vert}{-3e^{5t}} = \frac{3e^{6t}}{-3e^{5t}} = -e^{t} $

From this, we integrate with respect to $t$ to get

$\displaystyle u_{1} = -\frac{1}{2}e^{-2t}, \ u_{2} = -e^{t} $

Therefore, the particular solution is given by
$\displaystyle {\bf X_{p}}$ $\displaystyle =$ $\displaystyle \Phi {\bf U} = \left(\begin{array}{rr}
2e^{4t}&e^{t}\\
e^{4t}&-e...
...}\right)\left(\begin{array}{c}
-\frac{1}{2}e^{-2t}\\
-e^{t}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle \begin{pmatrix}- 2e^{2t}\\
\frac{1}{2}e^{2t}
\end{pmatrix}$