Example Find the fundamental matrix of the following linear system..

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rrr}
2&-1&-1\\
2&1&-1\\
0&-1&1
\end{array}\right){\bf X}$

Answer

$\displaystyle \det(A - \lambda I) = \det\left(\begin{array}{rrr}
2-\lambda&-1&-...
...-1&1-\lambda
\end{array}\right) = (2-\lambda)(\lambda^{2} - 2\lambda + 2) = 0. $

Then we have $\lambda = 2, 1 \pm i$.

We find the eigen vector corresponds to $2$.

$\displaystyle A - 2I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
0&-1&-1\\
2&-1&-1\\
0&-1&-1
\end{array...
...rrow} \left(\begin{array}{rrr}
1&-1/2&-1/2\\
0&1&1\\
0&0&0
\end{array}\right)$  
  $\displaystyle \stackrel{\frac{R_{2}}{2}+ R_{1}\to R_{1}} {\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&0\\
0&1&1\\
0&0&0
\end{array}\right)$  

Thus, the eigen vector is ${\bf C} = \left(\begin{array}{r}
0\\
-1\\
1
\end{array}\right)$.

We next find the eigen vector corresponds to the complex eigen values $1+i$.

$\displaystyle A - (1+i) I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
1-i&-1&-1\\
2&-i&-1\\
0&-1&-i
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{\frac{1}{1-i} \times R_{1}\to R_{1}}\\
{}_{-(1+i)R_{1} + R_{2}\to R_{2}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&-1/1-i&-1/1-i\\
0&1&i\\
0&-1&-i
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{\frac{R_{2}}{1-i} + R_{1}\to R_{1}}\\
{}_{R_{2} + R_{3}\to R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&-1\\
0&1&i\\
0&0&0
\end{array}\right)$  

Thus, the eigen vector is ${\bf C} = \left(\begin{array}{r}
1\\
-i\\
1
\end{array}\right)$. Now we find the real part and the imaginary part of ${\bf C}e^{\lambda t}$.
$\displaystyle {\bf C}e^{\lambda t}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
1\\
-i\\
1
\end{array}\right)e^{(1+i)t} = \left(\begin{array}{c}
1\\
-i\\
1
\end{array}\right)e^{t}(\cos{t} + i\sin{t})$  
  $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
e^{t}\cos{t} + ie^{t}\sin{t}\\
e^{t}\sin{...
...}\\
- e^{t}\cos{t}\\
e^{t}\sin{t}
\end{array}\right)}_{\mbox{imaginary part}}$  

Thus, the fundamental matrix is given.

$\displaystyle \Phi = \begin{pmatrix}0& e^{t}\cos{t} & e^{t}\sin{t}\\
e^{2t} & ...
...}\sin{t} & -e^{t}\cos{t}\\
-e^{2t} & e^{t}\cos{t} & e^{t}\sin{t}
\end{pmatrix}$