Example Find the fundamental matrix of the following system of differential equations..

$\displaystyle {\bf X}^{\prime} = \left(\begin{array}{rrr}
1&-1&1\\
1&1&-1\\
2&-1&0
\end{array}\right){\bf X}$

Answer

$\displaystyle \det(A - \lambda I) = \left(\begin{array}{rrr}
1-\lambda&-1&1\\
...
...\\
2&-1&-\lambda
\end{array}\right) = -(\lambda + 1)(\lambda - 1)(\lambda - 2)$

Then the eigen values are $\lambda = 2, 1, -1$.Now we find the eigen vector ${\bf C}$ corresponds to $\lambda = 2$.

$\displaystyle (A - 2I){\bf C} = \left(\begin{array}{rrr}
-1&-1&1\\
1&-1&-1\\
...
...ght)\left(\begin{array}{c}
c_{1}\\
c_{2}\\
c_{3}
\end{array}\right) = {\bf0} $

Now we use Gaussian elimination)
$\displaystyle A - 2I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
-1&-1&1\\
1&-1&-1\\
2&-1&-2
\end{array...
...ghtarrow}
\left(\begin{array}{rrr}
1&-1&1\\
0&-2&0\\
0&1&0
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{R_{2} \leftrightarrow R_{3}}\\
{}...
..._{3}+R_{2}\to R_{2}}\\
{}_{R_{3}+R_{1}\to R_{1}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&1\\
0&1&0\\
0&0&0
\end{array}\right)$  

Here $c_{3}$ is an arbitrary constant,$c_{2} = 0$, $c_{1} = -c_{3}$. Then the vector C is represented by $\left(\begin{array}{r}
-1\\
0\\
1
\end{array}\right)$, where ${\bf X}_{1} = \left(\begin{array}{r}
-1\\
0\\
1
\end{array}\right)e^{2t}$ is an answer.
For the eigen value $\lambda = 1$, we find the eigen vector.
$\displaystyle A - I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
0&-1&1\\
1&0&-1\\
2&-1&-1
\end{array}\...
...htarrow}
\left(\begin{array}{rrr}
1&0&-1\\
0&-1&1\\
0&-1&1
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{-1 \times R_{2}\to R_{2}} \\
{}_{-R_{2}+R_{3}\to R_{3}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&-1\\
0&1&-1\\
0&0&0
\end{array}\right)$  

Then the eigen vector is $\left(\begin{array}{r}
1\\
1\\
1
\end{array}\right)$. Thus, ${\bf X}_{2} = \left(\begin{array}{r}
1\\
1\\
1
\end{array}\right)e^{t}$ is also a solution.Similarly, we find the eigen vector corresponding to $\lambda = -1$.
$\displaystyle A + I$ $\displaystyle =$ $\displaystyle \left(\begin{array}{rrr}
2&-1&1\\
1&2&-1\\
2&-1&1
\end{array}\r...
...htarrow}
\left(\begin{array}{rrr}
1&2&-1\\
0&-5&3\\
0&-5&3
\end{array}\right)$  
  $\displaystyle \stackrel{\begin{array}{c}
{}_{-\frac{1}{5} \times R_{2}\to R_{2}...
... R_{3}}\\
{}_{\frac{2R_{2}}{5} + R_{1}\to R_{1}}
\end{array}}{\longrightarrow}$ $\displaystyle \left(\begin{array}{rrr}
1&0&1/5\\
0&1&-3/5\\
0&0&0
\end{array}\right)$  

Then the eigen vector is $\left(\begin{array}{r}
-1\\
3\\
5
\end{array}\right)$. This shows that ${\bf X}_{3} = \left(\begin{array}{r}
-1\\
3\\
5
\end{array}\right)e^{-t}$ is also a solution.Now ${\bf X}_{1},{\bf X}_{2},{\bf X}_{3}$ are independent. Thus,the general solution is given by

$\displaystyle {\bf X} = c_{1}\left(\begin{array}{r}
-1\\
0\\
1
\end{array}\ri...
...ight)e^{t} + c_{3}\left(\begin{array}{r}
-1\\
3\\
5
\end{array}\right)e^{-t} $

Here the matrix composed by column vectors ${\bf X}_{1},{\bf X}_{2},{\bf X}_{3}$ is the fundamental matrix.

$\displaystyle \Phi = \begin{pmatrix}
-e^{2t} & e^{t} & -e^{-t}\\
0 & e^{t} & 3e^{-t}\\
e^{2t} & e^{t} & 5e^{-t}
\end{pmatrix}$