例題 次の微分方程式の基本解を求めよ.

$\displaystyle \left\{\begin{array}{rc}
x_{1}^{\prime} =& 2x_{1} - x_{2}\\
x_{2}^{\prime} =& 4x_{1} + 6x_{2}
\end{array} \right . $

解答 $\det(A - \lambda I) = \left(\begin{array}{cc}
2-\lambda&-1\\
4&6-\lambda
\end{array}\right) = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^{2}$ より固有値は $\lambda = 4$である。次に固有値 $\lambda = 4$に対する固有ベクトル${\bf C}$

$\displaystyle (A - 4I){\bf C} = \left(\begin{array}{cc}
-2 & -1\\
4 & 2
\end{a...
...\
c_{2}
\end{array}\right) = \left(\begin{array}{c}
0\\
0
\end{array}\right) $

をみたす。

$\displaystyle \left(\begin{array}{cc}
-2&-1\\
4&2
\end{array}\right) \Longrightarrow \left(\begin{array}{cc}
1&\frac{1}{2}\\
0&0
\end{array}\right) $

より $c_{2} = -2\alpha$とおくと, $c_{1} = \alpha$となる。したがって,固有ベクトルは $\left(\begin{array}{c}
c_{1}\\
c_{2}
\end{array}\right) = \alpha \left(\begin{array}{c}
1 \\
-2
\end{array}\right)$である。次に,

$\displaystyle (A - 4I)^2 {\bf C} = {\bf0},  (A - 4I){\bf C} \neq {\bf0} $

を満たす${\bf C}$を見つけると

$\displaystyle (A - 4I)^2 = \left(\begin{array}{cc}
-2&-1\\
4&2
\end{array}\right)^2 = \left(\begin{array}{cc}
0&0\\
0&0
\end{array}\right) $

より, ${\bf C} = \left(\begin{array}{c}
\alpha\\
\beta
\end{array}\right)$ $(A - 4I)^2 = {\bf0}$を満たす。ここでもう一つの条件を満たすように $\alpha,\beta$を選ぶと, ${\bf C} = \left(\begin{array}{c}
1\\
1
\end{array}\right)$となり,2つめの解
$\displaystyle e^{At}{\bf C}$ $\displaystyle =$ $\displaystyle e^{4t}e^{(A-4I)t}{\bf C} = e^{4t}[{\bf C} + t(A - 4I){\bf C} + \frac{t^2}{2!}(A - 4I)^2 {\bf C}]$  
  $\displaystyle =$ $\displaystyle e^{4t}\{\left(\begin{array}{c}
1\\
1
\end{array}\right) + \left(...
...array}\right)t\} = e^{4t}\left(\begin{array}{c}
1-3t\\
1+6t
\end{array}\right)$  

ここで $\left(\begin{array}{c}
1\\
-2
\end{array}\right), \left(\begin{array}{c}
1-3t\\
1+6t
\end{array}\right)$は1次独立なので,基本解は次のように表わすことができる。

$\displaystyle \Phi = \begin{pmatrix}
1 & 1-3t \\
-2 & 1+6t
\end{pmatrix}e^{4t}$