Example Express the following equation using Euler's formula..

\begin{displaymath}\begin{array}{ll}
1. & z = 3 - \sqrt{3}i \\
2. & z = 2i
\end{array}\end{displaymath}

Answer When we express a complex number $a+bi$ by using the distance from the origin $r$ and the angle from the $x$-axis called argument $\theta$ in the following way: $x = r\cos{\theta}, y = r\sin{\theta}$.we call this representation polar form. So, $x+iy = r(\cos{\theta} + i \sin{\theta})$. $r(\cos{\theta} + i \sin{\theta}) = e^{i\theta}$ is called Euler's formula..

1. Express $z = 3 - \sqrt{3}i$ in the polar form. Then $r = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3}$. Also, $\theta = \tan^{-1}{\frac{-\sqrt{3}}{3}} = -\frac{\pi}{6}$. Then,,

$\displaystyle 2e^{-\frac{\pi}{6}i}. $

2. Express $z =2i$ in the polar form, $r = \sqrt{0 +2^2} = \sqrt{4} = 2$. Also, $\theta = \tan^{-1}{\infty} = \frac{\pi}{2}$. Thsu,