例題 Greenの定理を用いて次の線積分の値を求めよ.

$\displaystyle \int_{C}(x^2y dx - xy^2dy), C:$   単位円周

解答 1. Greenの定理 $C$を単一閉曲線とし,$\Omega$をその周および内部からなる閉領域とする.関数$P(x,y)$, $Q(x,y)$$\Omega$で連続な偏導関数をもつとき,

$\displaystyle \int_{C}Pdx + Qdy = \iint_{\Omega}(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$

Greenの定理を用いると

$\displaystyle \int_{c}(xy^2 dx - xy^2 dy)$ $\displaystyle =$ $\displaystyle \int\int_{R}(\frac{\partial(-xy^2)}{\partial{x}} - \frac{\partial(x^2 y)}{\partial{y}})dx dy$  
$\displaystyle \int\int_{R}(-y^2 - x^2)dxdy = -\int\int_{R}(x^2 + y^2)dx dy$      
  $\displaystyle =$ $\displaystyle - \int_{0}^{2\pi}\int_{r =0}^{1} r^2 \vert J\vert dr d\theta$  

ここでジャコビアン$J$を求めると $J = \frac{\partial(x,y)}{\partial(r,\theta)} = \left\vert\begin{array}{cc}
\fr...
...y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right\vert = r$.

これより

$\displaystyle \int_{c}(xy^2 dx - xy^2 dy)$ $\displaystyle =$ $\displaystyle - \int_{0}^{2\pi}\int_{r =0}^{1} r^2 r dr d\theta$  
  $\displaystyle =$ $\displaystyle - \int_{0}^{2\pi} d\theta \int_{r =0}^{1} r^3 dr = - 2\pi \frac{1}{4} = -\frac{\pi}{2}$