Example Find the following double integral.

$\displaystyle \iint_{\Omega}(x^2 - y)dxdy, \ \Omega = \{-1 \leq x \leq 1, -x^2 \leq y \leq x^2\} $

Answer Draw a region $\Omega$, we have

図 1: $-x^2 \leq y \leq x^2$
\includegraphics[width=6cm]{CALCFIG/Fig7-2-2-4.eps}

This region is V-simple. So, we can integrate in the direction of $y$-axis first. Then we integrate in the direction of $x$-axis.


$\displaystyle \iint_{\Omega}(x^2 - y)dxdy$ $\displaystyle =$ $\displaystyle \int_{-1}^{1}(\int_{-x^2}^{x^2}(x^2 - y)dy)dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}\left[(x^2 y - \frac{1}{2}y^2) \right ]_{-x^2}^{x^2} dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}[(x^4 - \frac{1}{2}x^4) - (-x^4 - \frac{1}{2}x^4)]dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}2x^4dx = \left[\frac{2}{5}x^5]\right ]_{-1}^{1} = \frac{4}{5}$