例題 次の曲面上の点 $(1,1,\frac{\pi}{4})$における接平面と法線を求めよ.

$\displaystyle z = \tan^{-1}\frac{y}{x} $

解答 $(x_{0},y_{0},f(x_{0},y_{0}))$ を通り法線ベクトルが $(f_{x}(x_{0},y_{0}), f_{y}(x_{0},y_{0}), -1)$であたえられる平面を考えます.このとき,平面上の任意の点$(x,y,z)$と点 $(x_{0},y_{0},f(x_{0},y_{0}))$が作るベクトルと法線ベクトルは直交します.したがって,

$\displaystyle (x - x_{0},y-y_{0},z-f(x_{0},y_{0})) \cdot (f_{x}(x_{0},y_{0}), f_{y}(x_{0},y_{0}), -1) = 0$

これより,平面の方程式は,

$\displaystyle z - f(x_{0},y_{0}) = (f_{x}(x_{0},y_{0}), f_{y}(x_{0},y_{0})) \cdot (x-x_{0},y-y_{0}) $

または,

$\displaystyle z = f(x_{0},y_{0}) + f_{x}(x_{0},y_{0})(x-x_{0}) + f_{y}(x_{0},y_{0})(y-y_{0})$

これを上記の問題に当てはめると,

$\displaystyle f_{x}(x,y) = \frac{-\frac{y}{x^2}}{1+(\frac{y}{x})^2} = \frac{-y}{x^2 + y^2}$

$\displaystyle f_{y}(x,y) = \frac{\frac{1}{x}}{1+(\frac{y}{x})^2} = \frac{x}{x^2 + y^2}$

$f(1,1) = \tan^{-1}{1} = \frac{\pi}{4}$ これより,求める接平面は

$\displaystyle z = \frac{\pi}{4} - \frac{1}{2}(x-1) + \frac{1}{2}(y-1)$

別解 $f(x,y,z) = \tan^{-1}{\frac{y}{x}} - z = 0$とおくと

$\displaystyle \nabla f(x,y,z) = (\frac{\frac{-y}{x}}{1 + (\frac{y}{x})^2}, \fra...
...x}}{1 + (\frac{y}{x})^2}, -1) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, -1)$

よって

$\displaystyle \nabla f(1,1,\frac{\pi}{4}) = (-\frac{1}{2}, \frac{1}{2}, -1)$

ここで,$\nabla f$は曲面 $f(x,y,z) = 0$に直交するので,接平面$\Gamma$上に任意の点$(x,y,z)$を取ると,ベクトル $(x - 1, y - 1, z - \frac{\pi}{4})$ $\nabla f(1,1,\frac{\pi}{4})$は直交する.よって,接平面の方程式は

$\displaystyle (x - 1, y - 1, z - \frac{\pi}{4}) \cdot (-\frac{1}{2}, \frac{1}{2}, -1) = 0$

又は,

$\displaystyle -\frac{1}{2}(x-1) + \frac{1}{2}(y-1) - (z - \frac{\pi}{4}) = 0$

法線は$\nabla f$と同方向にあるので,法線上に任意の点$(x,y,z)$を取ると,

$\displaystyle (x - 1, y - 1, z - \frac{\pi}{4}) = t(-\frac{1}{2}, \frac{1}{2}, -1)$

又は,

$\displaystyle t = \frac{x-1}{-\frac{1}{2}} = \frac{y-1}{\frac{1}{2}} = \frac{z - \frac{\pi}{4}}{-1} $