例題 次の2重積分を求めよ.

$\displaystyle \iint_{\Omega}(x^2 - y)dxdy, \ \Omega = \{-1 \leq x \leq 1, -x^2 \leq y \leq x^2\} $

解答 $\Omega$ を図示(図1)すると

図 1: $-x^2 \leq y \leq x^2$
\includegraphics[width=6cm]{CALCFIG/Fig7-2-2-4.eps}

この領域はV-simpleなので,


$\displaystyle \iint_{\Omega}(x^2 - y)dxdy$ $\displaystyle =$ $\displaystyle \int_{-1}^{1}(\int_{-x^2}^{x^2}(x^2 - y)dy)dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}\left[(x^2 y - \frac{1}{2}y^2) \right ]_{-x^2}^{x^2} dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}[(x^4 - \frac{1}{2}x^4) - (-x^4 - \frac{1}{2}x^4)]dx$  
  $\displaystyle =$ $\displaystyle \int_{-1}^{1}2x^4dx = \left[\frac{2}{5}x^5]\right ]_{-1}^{1} = \frac{4}{5}$