例題 次の関数の導関数を求めよ..

$\displaystyle \displaystyle{y = \frac{x^2+1}{x^3 -1}} $

解答 導関数を求めるうえで重要なことは,つぎのことである.

1. 和の導関数は導関数の和はである. $(f(x) + g(x))' = f'(x) + g'(x)$  
2. 定数倍の導関数は導関数の定数倍である. $(\alpha f(x))' = \alpha f'(x)$  
3. 積の微分法. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$  
4. 商の微分法. $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ 5. 基本的な関数の導関数. $(\tan{x})' = \sec^{2}{x}, (\sec{x})' = \sec{x}\tan{x}$  

これを上記の問題に当てはめると

$\displaystyle (\frac{x^2+1}{x^3 -1})'$ $\displaystyle =$ $\displaystyle \frac{(x^2+1)'(x^3 - 1) - (x^2+1)(x^3 -1)'}{(x^3 -1)^2}$  
  $\displaystyle =$ $\displaystyle \frac{2x(x^3 -1) -(x^2+1)(3x^2)}{(x^3 -1)^2}$  
  $\displaystyle =$ $\displaystyle \frac{-x^4 -3x^2-2x}{(x^3 -1)^2}$  
  $\displaystyle =$ $\displaystyle \frac{-x(x^3 + 3x + 2)}{(x^3 -1)^2}$