例題 変数変換を用いて次の積分を計算せよ.

$\displaystyle \iint_{\Omega}xydxdy,  \Omega = \{x^2 + y^2 \leq 1, x,y \geq 0\} $

解答

図: 変換前と変換後
\includegraphics[width=8cm]{CALCFIG/Fig7-3-1.eps}

極座標変換を用いると, $0 \leq x^2 + y^2 = r^2 \leq 1$, また, $x = r\cos{\theta}, y = r\sin{\theta} \geq 0$ より $\displaystyle{0 \leq \theta \leq \frac{\pi}{2}}$.よって $\Omega$

$\displaystyle \Gamma = \{(r,\theta) : 0 \leq r \leq 1,  0 \leq \theta \leq \frac{\pi}{2} \} $

にうつる.したがって,
$\displaystyle \iint_{\Omega}xydxdy$ $\displaystyle =$ $\displaystyle \iint_{\Gamma}r^3\cos{\theta}\sin{\theta}drd{\theta}$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}r^{3}dr\int_{0}^{\frac{\pi}{2}}\sin{\theta}\cos{\thet...
...cdot \left[\frac{\sin^{2}{\theta}}{2}\right ]_{0}^{\frac{\pi}{2}} = \frac{1}{8}$